

Promoting Statistics for the Youth

August 28, 2013

Byeong U. Park

Department of Statistics
Seoul National University

What is Statistics?

- A study of the
 - collection,
 - analysis,
 - interpretation

of Data.

 Linked to and applied to various real problems in industry as well as scientific problems in other disciplines, founded on mathematical thinking.

100

Science Paradigm for 21st Century

Role of Statistics in Data Science

Massive Data with **Uncertainty**

Statistical Modeling and Data Analysis

Knowledge Production and Scientific Discovery from **Data**

Far-reaching Influence of Statistics

- Citation distribution of Bootstrap paper (Efron, 1979)

Far-reaching Influence of Statistics

Statistical Topic	Author	Journal Title	Citation*
EM Algorithm	Dempster et al. (1977)	Journal of the Royal Statistical Society Series B	33,645
False Discovery Rate	Benjamini and Hochberg (1995)	Journal of the Royal Statistical Society Series B	17,964
Co-integration**	Engle and Granger (1987)	Econometrica	20,249

^{* 2013.06.06}

^{**} Nobel Prize in Economic Sciences (2003)

Ball Sampling

Average:
$$\frac{15\mu_1 + 5\mu_2}{20} \left(\neq \frac{\mu_1 + \mu_2}{2} \right)$$

Ball Sampling

Average:
$$\frac{\mu_1 + \mu_2}{2}$$

Weighted Average:
$$\frac{15\left(\frac{50}{15}\mu_{1}\right) + 5\left(\frac{50}{5}\mu_{2}\right)}{15 \times \frac{50}{15} + 5 \times \frac{50}{5}} \left(=\frac{\mu_{1} + \mu_{2}}{2}\right)$$

Credit Loan Survey

- Investigated the relation between overdue status of credit loan and employment status to establish a strategy for allowing loan or not.
- Found that the group of people in their employment has a much higher overdue rate than the group of unemployed.
- Why?

Chain-Ladder Data

j j	1	2	22	##	120	66 1	n
1	$Z_{1,1}$	$Z_{1,2}$	#		***	924	$Z_{1,n}$
2	$Z_{2,1}$	$Z_{2,2}$			34	$Z_{2,n-1}$	
1		II.	1	*			
i	$Z_{i,1}$	$Z_{i,2}$	570	$Z_{i,n-i+1}$			
ì	i	#					
1	1	$Z_{n-1,2}$					
n	$Z_{n,1}$						

(e.g. 1) Future liability for insurance i = Accident year, j= development year

(e.g. 2) Divorce rate i = Marriage year, j=Divorce year

• Body Fat (%) =
$$\frac{\text{Total Weight of Fat}}{\text{Weight}} \times 100$$

Typical Body Fat Amounts

Description	Men	Women
Exceptionally lean	6 ~ 10 %	10 ~ 15 %
Very lean	11 ~ 14 %	16 ~ 20 %
Lean*	15 ~ 18 %	21 ~ 25 %
Moderate	19 ~ 24 %	26 ~ 29 %
Obese	≥25 %	≥30 %

^{*} Thin but looks strong and healthy

Men

Women

- Body fat percentage is a good health indicator.
- How to measure body fat percentage?
- MRI, CT: Accurate, but expensive

Body Fat Required Data Entry		
Select Your Gender	Enter Your Weight In Pounds	
MaleFemale	Enter Your Waist Size In Inches	

1

Free but fairly accurate calculator (statistical modeling and prediction)

Cheap but less accurate equipment

http://www.csgnetwork.com/bodyfatcalc.html http://extremebodyfit.com/fat-loss/how-to-calculate-your-body-fat-percentage

- Nonparametric function estimation
 - Quantile additive model
 - Response(Y) = Body Fat percentage
 - Covariate(X) = (Age, Height, Abdomen, Hip)
 - $(Body Fat) = f_1(Age) + f_2(Height) + f_3(Abdomen) + f_4(Hip)$ +(measurement error)

Era of Big Data

Production of Massive Data

- Over 95% of human-made data have been generated just during last 2 years.
- 1.8 zettabytes in 2011 (2x10¹¹ HD movies that can be watched for 47 million years)
- Expect 50-fold increase by 2020.

Type of Data

- Conventional: number
- New: images, sounds, texts, web logs (Facebook, Twitter, ...)

Simpson's Paradox

Berkeley Gender Bias

- Lawsuit for gender bias against women for admission to graduate schools in the fall 1973
- Men were more likely than women to be admitted.

Gender	der Total Applicants Percenta	
Men	8,442	44 %
Women	4,321	35 %

https://en.wikipedia.org/wiki/Simpson's_paradox

Simpson's Paradox

But, disaggregation of the data showed:

Department	N	len	Women		
	Applicants	Admitted (%)	Applicants	Admitted (%)	
Α	825	62 %	108	82 %	
В	560	63 %	25	68 %	
С	325	37 %	593	34 %	
D	417	33 %	375	35 %	
E	191	28 %	393	24 %	
F	272	6 %	341	7 %	

https://en.wikipedia.org/wiki/Simpson's_paradox

Simpson's Paradox

Data Analysis Paper in Science

- Bickel, Hammel and O'Connell (1975),
 "Sex Bias in Graduate Admissions: Data from Berkeley", Science, Vol. 187, p. 498-404.
- Size of box indicates relative number of applicants to the department.

- Since web pages are extremely diverse, the role of search engines are very important.
- Earlier search engines showed web pages related to the query only based on contents in the page.
 - (e.g.) There are too many web pages containing the word "university".
 - → Is it reasonable to rank pages just in the order of appearance counts of the word "university"?
- We need to consider which page is of the most importance.

- Measure of Importance
 - Page, et al. (1999) "The PageRank Citation Ranking: Bringing Order to the Web", Technical Report. Stanford InfoLab.
 - Importance based on the webpages linked to it

Comparison of query for "university"

Cluster Analysis on Facebook

- Salter-Townshend (2012), "Analysing My Facebook Friends", Significance, p. 40-42.
- A statistical analysis of the link pattern (grey lines) reveals information on the Facebook friends (circles).
- The algorithm picks up 8 groups as different colors.
- In fact Facebook uses closeness measures to make their friend suggestions.
 - Cf) Yellow(family), Blue(girl friends), Red(dormitory friends), Green(ski club members), ...

Netflix Prize

Netflix

- Online DVD rental service company
- (data) 100,480,507 ratings that 480,189 users gave to 17,770 movies

Objective

- Three-year (2007-2009) contest for movie recommendation system
- Improving prediction algorithm for user ratings based on the data
- At least 10% better performance than Cinematch, Netflix's algorithm

Competition Result

- \$ 100,000,000 prize open competition
- Winning to BellKor team, AT&T statistician group
- The winning algorithm is also applicable to other marketing area.

Higgs Boson Data

Large Hadron Collider (LHC)

"Testing nature to the limit: the Large Hadron Collider",

Higgs Boson Data

Standard Model in Physics

- A theory concerning the electromagnetic, weak and strong nuclear interactions
- There exists 25 adjustable parameters.

Higgs Boson

- An unconfirmed piece of the theory
- Exist theoretically but no evidence
- Strong belief for most physicists

Higgs Boson Data

Key Goal of LHC

- Establish whether Higgs boson actually exists or not.
- Measure, if so, properties of Higgs boson.

LHC Data

- LHC produce close to a billion events per seconds. (≈ 10¹⁵ bytes)
- (1 DVD ≈ 5 GB) 200,000 DVDs are needed for a second.
- But, only a tiny fraction of those are of potential interest.

Bioinformatics

- Biology + Informatics
- Genome sequence analysis and its management
- Biologically novel discovery from genomic data

Medical Science

 Finding optimal therapy based on massive medical records combining health insurance data

Brain Science

- Complex understanding on brain function
- Statistical analysis of signals on brain with high-dimensional images
 (e.g.) Functional Magnetic Resonance Image (fMRI) data

Thesen et al. (2012), "Sequential then interactive processing of letters and words in the left fusiform gyrus, *Nature Communications*, Vol. 3.

Signal Processing

- Voice/picture recognition, Image denoising algorithm, ...
- Conventional: Physical pattern analysis
- New: Statistical/Machine learning

Earth Science

- Meteorology, Climatology, Oceanography, Seismology, ...
- Probabilistic/Statistical models perform more efficient than computationally heavy physical-dynamic models

(e.g.) Ensemble method

 -3^{rd} generation $\rightarrow 4^{th}$ generation science

Astronomy

- Spatial-temporal distribution analysis for cosmic evolution
- Measurement error or observation truncation on magnitude of stars

And MANY others...!

Prospects

For Today's Graduate, Just One Word: Statistics

- New York Times, August 5, 2009
- "People think of field Archaeology as Indiana Jones, but much of what you really do is data analysis." Carrie Grimes, Google statistician
- "We are rapidly entering a world where everything is monitored and measured but the big problem is going to be the ability of human to use, analyze and make sense of the data" – Erik Brynjolfsson, director of MIT center for digital business

Statistics - Dream Job of the Next Decade

 "People can make the data tell a story, and everybody has data, but the problem is how to utilize the data more effectively." – Hal Varian, Google chief economist

Thank You!

bupark@stats.snu.ac.kr

The Ward Ward Ward Country Ward Country Countr